Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
2.
Environ Pollut ; 351: 124026, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663509

ABSTRACT

To develop a highly efficient adsorbent to remediate and remove hexavalent chromium ions (Cr(VI)) from polluted water, cellulose acetate (CA) and chitosan (CS), along with metal oxides (titanium dioxide (TiO2) and ferroferric oxide (Fe3O4)), and a zirconium-based metal-organic framework (UiO-66) were used to fabricate the composite porous nanofiber membranes through electrospinning. The adsorption performance, influencing factors, adsorption kinetics and isotherms of composite nanofiber membranes were comprehensively investigated. The multi-layer membrane with interpenetrating nanofibers and surface functional groups enhanced the natural physical adsorption and provided potential chemical sites. The thermal stability was improved by introducing TiO2 and UiO-66. CA/CS/UiO-66 exhibited the highest adsorption capacity (118.81 mg g-1) and removal rate (60.76%), which were twice higher than those of the control. The correlation coefficients (R2) of all the composite nanofibers regressed by the Langmuir model were significantly higher than those by the Freundlich model. The pseudo-first-order kinetic curve of CA/CS composite nanofibers showed the highest R2 (0.973), demonstrating that the whole adsorption process involved a combination of strong physical adsorption and weak chemical adsorption by the amino groups of CS. However, the R2 values of the pseudo-second-order kinetic model increased after incorporating TiO2, Fe3O4, and UiO-66 into the CA/CS composite nanofiber membranes since an enhanced chemical reaction with Cr (VI) occured during the adsorption.

3.
Environ Pollut ; 346: 123646, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38402938

ABSTRACT

Stover and manure are the main solid waste in agricultural industry. The generation of stover and manure could lead to serious environmental pollution if not handled properly. Composting is the potential greener solution to remediate and reduce agricultural solid waste, through which stover and manure could be remediated and converted into organic fertilizer, but the long composting period and low efficiency of humic substance production are the key constraints in such remediation approach. In this study, we explore the effect of lignocellulose selective removal on composting by performing chemical pretreatment on agricultural waste followed by utilization of biochar to assist in the remediation by co-composting treatment and reveal the impacts of different lignocellulose component on organic fertilizer production. Aiming to discover the key factors that influence humification during composting process and improve the composting quality as well as comprehensive utilization of agricultural solid waste. The results demonstrated that the removal of selective lignin or hemicellulose led to the shift of abundances lignocellulose-degrading bacteria, which in turn accelerated the degradation of lignocellulose by almost 51.2%. The process also facilitated the remediation of organic waste via humification and increased the humic acid level and HA/FA ratio in just 22 days. The richness of media relies on their lignocellulose content, which is negatively correlated with total nitrogen content, humic acid (HA) content, germination index (GI), and pH, but positively correlated with fulvic acid (FA) and total organic carbon (TOC). The work provides a potential cost effective and efficient framework for agricultural solid waste remediation and reduction.


Subject(s)
Humic Substances , Soil , Lignin/metabolism , Solid Waste , Manure , Fertilizers
4.
Environ Res ; 250: 118441, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38350544

ABSTRACT

This review delves into the escalating concern of environmental pollutants and their profound impact on human health in the context of the modern surge in global diseases. The utilisation of chemicals in food production, which results in residues in food, has emerged as a major concern nowadays. By exploring the intricate relationship between environmental pollutants and gut microbiota, the study reveals a dynamic bidirectional interplay, as modifying microbiota profile influences metabolic pathways and subsequent brain functions. This review will first provide an overview of potential exposomes and their effect to gut health. This paper is then emphasis the connection of gut brain function by analysing microbiome markers with neurotoxicity responses. We then take pesticide as example of exposome to elucidate their influence to biomarkers biosynthesis pathways and subsequent brain functions. The interconnection between neuroendocrine and neuromodulators elements and the gut-brain axis emerges as a pivotal factor in regulating mental health and brain development. Thus, manipulation of gut microbiota function at the onset of stress may offer a potential avenue for the prevention and treatment for mental disorder and other neurodegenerative illness.

5.
Environ Res ; 248: 118282, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38295974

ABSTRACT

The escalating consumer demand for crabs results in a growing amount of waste, including shells, claws, and other non-edible parts. The resulting crab shell waste (CSW) is disposed of via incineration or landfills which causes environmental pollution. CSW represents a potential biological resource that can be transformed into valuable resources via pyrolysis technique. In this study, microwave pyrolysis of CSW using self-purging, vacuum, and steam activation techniques was examined to determine the biochar production yield and its performance in treating palm oil mill effluent (POME). The biochar produced through microwave pyrolysis exhibits yields ranging from 50 to 61 wt%, showing a hard texture, low volatile matter content (≤34.1 wt%), and high fixed carbon content (≥58.3 wt%). The KOH-activated biochar demonstrated a surface area of up to 177 m2/g that is predominantly composed of mesopores, providing a good amount of adsorption sites for use as adsorbent. The biochar activated with steam removed 8.3 mg/g of BOD and 42 mg/g of COD from POME. The results demonstrate that microwave pyrolysis of CSW is a promising technology to produce high-quality biochar as an adsorbent for POME treatment.


Subject(s)
Brachyura , Charcoal , Animals , Palm Oil , Microwaves , Pyrolysis , Steam , Industrial Waste/analysis
6.
J Oral Facial Pain Headache ; 37(3): 207-216, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37975784

ABSTRACT

AIMS: To develop a new approach to provide insights into contributing factors to the etiology and pathogenesis of temporomandibular disorders (TMDs) through discrimination of the salivary metabolomic profiling of patients with TMDs of muscular origin (ie, local myalgia) and healthy individuals. METHODS: Saliva samples from 19 patients with TMDs of muscular origin (ie, local myalgia) and 39 healthy controls were collected and identified by nuclear magnetic resonance (NMR) spectroscopy. 1H NMR spectra for all samples were acquired using a Bruker Avance-III NMR spectrometer operating at 500 MHz, and data processing was performed in TopSpin, MestreNova, SIMCA, and AMIX softwares for metabolite identification. RESULTS: Eight key metabolites were identified between the healthy controls and patients: L-isoleucine, methylmalonic acid, isopropanolamine, dimethyl sulfone, lactic acid, 4-ethoxyphenylacetic acid, N-acetyl alanine, and D-galactose. CONCLUSIONS: The results of this study demonstrate that NMR-based metabolomics coupled with multivariate data analysis is a powerful method for the metabolomic profiling of patients with TMDs of muscular origin (ie, local myalgia).


Subject(s)
Myalgia , Temporomandibular Joint Disorders , Humans , Pilot Projects , Metabolomics/methods , Biomarkers/analysis , Biomarkers/metabolism
7.
Animals (Basel) ; 13(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37893987

ABSTRACT

Overuse of antibiotics in aquaculture has generated bacterial resistance and altered the ecology. Aquacultural disease control requires an environmentally sustainable approach. Bacterial exopolysaccharides (EPSs) as bioimmunostimulants have not been extensively explored in aquaculture. This study investigated EPS produced from 5% w/v riceberry broken rice as a carbon source and 1% w/v soybean meal as a nitrogen source by Bacillus tequilensis PS21 from milk kefir grain for its immunomodulatory, antioxidant activities and resistance to pathogenic Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). The FTIR spectrum of EPS confirmed the characteristic bonds of polysaccharides, while the HPLC chromatogram of EPS displayed only the glucose monomer subunit, indicating its homopolysaccharide feature. This EPS (20 mg/mL) exhibited DPPH scavenging activity of 65.50 ± 0.31%, an FRAP value of 2.07 ± 0.04 mg FeSO4/g DW, and antimicrobial activity (14.17 ± 0.76 mm inhibition zone diameter) against S. agalactiae EW1 using the agar disc diffusion method. Five groups of Nile tilapia were fed diets (T1 (Control) = 0.0, T2 = 0.1, T3 = 0.2, T4 = 1.0, and T5 = 2.0 g EPS/kg diet) for 90 days. Results showed that EPS did not affect growth performances or body composition, but EPS (T4 + T5) significantly stimulated neutrophil levels and serum lysozyme activity. EPS (T5) significantly induced myeloperoxidase activity, catalase activity, and liver superoxide dismutase activity. EPS (T5) also significantly increased the survival of fish at 80.00 ± 5.77% at 14 days post-challenge with S. agalactiae EW1 compared to the control (T1) at 53.33 ± 10.00%. This study presents an efficient method for utilizing agro-industrial biowaste as a prospective source of value-added EPS via a microbial factory to produce a bio-circular green economy model that preserves a healthy environment while also promoting sustainable aquaculture.

8.
Data Brief ; 50: 109474, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37600590

ABSTRACT

This data evaluated the capacity of Bacillus spp. isolated from Thai milk kefir to produce exopolysaccharide (EPS) on cassava pulp and tested its antioxidant and antibacterial properties. Thailand's starch industry generates million tons of cassava pulp, which is underutilized or bio-transformed into higher-value bioproducts. Antioxidant and antibacterial bacterial exopolysaccharides are beneficial in the food, feed, pharmaceutical, and cosmetic industries. Moisture, ash, fat, protein, fiber, starch, sugar, neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) were analyzed from cassava pulp as an EPS substrate. After 3 days of bacterial fermentation, EPS generation, culture pH, reducing sugar amount, and bacterial count were recorded. Antioxidant activities and bioactive content including hydroxyl radical scavenging activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power (FRAP), total phenolic and flavonoid content (TPC and TFC), and antimicrobial activity against two Nile tilapia pathogens (Streptococcus agalactiae and Staphylococcus aureus) from different Bacillus species were evaluated. Proximate analysis, dinitrosalicylic acid assay, pH value record, bacterial count using spread plate method, antioxidant activity and bioactive content assays via spectrophotometry, and agar disk diffusion were the main approaches. This study used microbial cell factories to convert agro-biowaste, such as cassava pulp, into EPS bioproducts which accords with a bio-circular green economy model.

9.
Environ Pollut ; 336: 122451, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37648056

ABSTRACT

The detrimental impact of volatile organic compounds on the surroundings is widely acknowledged, and effective solutions must be sought to mitigate their pollution. Adsorption treatment is a cost-effective, energy-saving, and flexible solution that has gained popularity. Biomass is an inexpensive, naturally porous material with exceptional adsorbent properties. This article examines current research on volatile organic compounds adsorption using biomass, including the composition of these compounds and the physical (van der Waals) and chemical mechanisms (Chemical bonding) by which porous materials adsorb them. Specifically, the strategic modification of the surface chemical functional groups and pore structure is explored to facilitate optimal adsorption, including pyrolysis, activation, heteroatom doping and other methods. It is worth noting that biomass adsorbents are emerging as a highly promising strategy for green treatment of volatile organic compounds pollution in the future. Overall, the findings signify that biomass modification represents a viable and competent approach for eliminating volatile organic compounds from the environment.

10.
Environ Pollut ; 317: 120790, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36460190

ABSTRACT

This study aims to investigate the positive effects of the combined use of Enterobacter cloacae and biochar on improving nitrogen (N) utilization. The greenhouse pots experimental results showed the synergy of biochar and E. cloacae increased soil total N content and plant N uptake by 33.54% and 15.1%, respectively. Soil nitrogenase (NIT) activity increased by 253.02%. Ammonia monooxygenase (AMO) and nitrate reductase (NR) activity associated with nitrification and denitrification decreased by 10.94% and 29.09%, respectively. The relative abundance of N fixing microorganisms like Burkholderia and Bradyrhizobium significantly increased. Sphingomonas and Ottowia, two bacteria involved in the nitrification and denitrification processes, were found to be in lower numbers. The E. cloacae's ability to fix N2 and promote the growth of plants allow the retention of N in soil and make more N available for plant development. Biochar served as a reservoir of N for plants by adsorbing N from the soil and providing a shelter for E. cloacae. Thus, biochar and E. cloacae form a synergy for the management of agricultural N and the mitigation of negative impacts of pollution caused by excessive use of N fertilizer.


Subject(s)
Nitrogen-Fixing Bacteria , Soil , Nitrification , Agriculture , Charcoal/pharmacology , Soil Microbiology , Nitrogen
11.
Environ Sci Pollut Res Int ; 30(28): 71780-71793, 2023 Jun.
Article in English | MEDLINE | ID: mdl-34585345

ABSTRACT

Slaughterhouse and wet market wastes are pollutants that have been always neglected by society. According to the Food and Agriculture Organization of the United Nations, more than three billion and nineteen million livestock were consumed worldwide in 2018, which reflects the vast amount and the broad spectrum of the biowastes generated. Slaughterhouse biowastes are a significant volume of biohazards that poses a high risk of contamination to the environment, an outbreak of diseases, and insecure food safety. This work comprehensively reviewed existing biowaste disposal practices and revealed the limitations of technological advancements to eradicate the threat of possible harmful infectious agents from these wastes. Policies, including strict supervision and uniform minimum hygienic regulations at all raw food processing factories, should therefore be tightened to ensure the protection of the food supply. The vast quantity of biowastes also offers a zero-waste potential for a circular economy, but the incorporation of biowaste recycling, including composting, anaerobic digestion, and thermal treatment, nevertheless remains challenging.


Subject(s)
Abattoirs , Refuse Disposal , Agriculture , Composting , Food , Waste Management
12.
Foods ; 13(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38201139

ABSTRACT

Calostoma insigne puffball mushrooms are only found in forests with rich biodiversity in very few countries including Thailand, and their biofunctions remain largely unexplored. This study used the agar disk diffusion assay, the anti-glucosidase assay, and the 3, 4, 5-dimethylthiazol-2-yl-2-5-diphenyltetrazolium bromide (MTT) assay to evaluate the bioactive potential of these endangered puffball mushrooms. Internal transcribed spacer (ITS) gene analysis identified C. insigne, a puffball mushroom with green, globose, and spiny spores. Fourier-transform infrared spectroscopy (FTIR) analysis confirmed the polysaccharide structure while scanning electron microscopy (SEM) revealed a fiber-like network. The ethanolic gelatinous fruiting body extract exhibited 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging capacity (57.96%), a ferric ion-reducing antioxidant power (FRAP) value of 1.73 mg FeSO4/g, and α-glucosidase inhibition (73.18%). C. insigne cytotoxicity was effective towards HT-29 colon cancer cells using the MTT assay (IC50 of 770.6 µg/mL at 72 h) and also showed antiproliferative capacity (IC50 of 297.1 µg/mL). This puffball mushroom stimulated apoptotic genes and proteins (caspase-3, Bax, and p21) via an intrinsic apoptotic pathway in HT-29 cells. In the laboratory, the medium formula consisting of 20% potato, 2% sucrose, and 0.2% peptone was optimal to increase fungal mycelial biomass (2.74 g DW/100 mL), with propagation at pH 5.0 and 30 °C. Puffball mushrooms are consumed as local foods and also confer several potential health benefits, making them worthy of conservation for sustainable utilization.

13.
Parasitol Res ; 121(11): 3105-3119, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36102969

ABSTRACT

Acanthamoeba cysts have a cellulose cell wall made up of a solid layer of ß-glucan, which confers resistance to the dormant phase of this microorganism. The ability of Acanthamoeba to change to this dormant phase causes difficulties in treating its infection at the cyst stage as compared to the trophozoite stage. Therefore, targeting cyst total mortality can help to prevent re-infection in patients. To ensure cysticidal treatment, a ß-glucanase enzyme was introduced in vitro to the Acanthamoeba cyst, followed by a chlorhexidine solution treatment. ß-glucanase enzyme and chlorhexidine dose-response analysis was performed based on cell wall integrity measurement. The treatment was also performed on human corneal epithelial cells to confirm the safety of the treatment in vitro. The surface morphology of the cysts was observed using scanning electron microscopy (SEM), while the protein alterations were determined using 1D protein analysis. The interaction of the ß-glucanase enzyme with cellulose linkages was investigated based on molecular dosimetry. Incubation of the cyst for 24 h at 8.75 units/ml of ß-glucanase followed by 0.88 µg/ml of chlorhexidine resulted in a substantial reduction in the total chlorhexidine used, which made it safer for human corneal epithelial cells. Ultrastructural changes revealed the reduction of the thickness in ectocyst and endocyst layers with the loss of the internal structure of the cyst. After combination treatment of chlorhexidine and ß-glucanase, a decrease in the cyst protein from the size of 37 to 25 kDa was observed. The enzyme-substrate interaction validated these results based on molecular docking between 1,4-ß-D-glucan and 1,4- ß-D-xylan with the ß-glucanase enzyme. In silico analysis revealed that two catalytic glutamate residues (Glu160 and Glu267) are essential to catalysing the hydrolytic reaction. Molecular dynamic simulation analysis revealed that both ligands formed stable interactions throughout the simulation. This work concludes that the enzymatic approach combined with chlorhexidine is a novel and effective technique for ensuring the cysticidal effects against the Acanthamoeba cyst. The interaction of the chlorhexidine and ß-glucanase enzyme on the surface of the cyst of amoeba resulted in the ecto-and endo cyst layer being damaged and confirmed the cysticidal effects.


Subject(s)
Acanthamoeba Keratitis , Acanthamoeba , beta-Glucans , Acanthamoeba/metabolism , Cellulose/metabolism , Chlorhexidine/pharmacology , Glucans , Glutamates , Humans , Ligands , Molecular Docking Simulation , Xylans
14.
Environ Res ; 215(Pt 1): 114218, 2022 12.
Article in English | MEDLINE | ID: mdl-36049514

ABSTRACT

The tremendous rise in the consumption of antimicrobial products had aroused global concerns, especially in the midst of pandemic COVID-19. Antimicrobial resistance has been accelerated by widespread usage of antimicrobial products in response to the COVID-19 pandemic. Furthermore, the widespread use of antimicrobial products releases biohazardous substances into the environment, endangering the ecology and ecosystem. Therefore, several strategies or measurements are needed to tackle this problem. In this review, types of antimicrobial available, emerging nanotechnology in antimicrobial production and their advanced application have been discussed. The problem of antimicrobial resistance (AMR) due to antibiotic-resistant bacteria (ARB)and antimicrobial resistance genes (AMG) had become the biggest threat to public health. To deal with this problem, an in-depth discussion of the challenges faced in antimicrobial mitigations and potential alternatives was reviewed.


Subject(s)
Anti-Infective Agents , COVID-19 , Angiotensin Receptor Antagonists , Angiotensin-Converting Enzyme Inhibitors , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Ecosystem , Humans , Pandemics/prevention & control
15.
Environ Res ; 214(Pt 4): 113934, 2022 11.
Article in English | MEDLINE | ID: mdl-36027962

ABSTRACT

The overuse of N fertilizers has caused serious environmental problems (e.g., soil acidification, excessive N2O in the air, and groundwater contamination) and poses a serious threat to human health. Improving N fertilizer utilization efficiency and plant uptake is an alternative for N fertilizers overuses. Enterobacter cloacae is an opportunistic pathogen, also used as plant growth-promoting rhizobacteria (PGPR), has been widely presented in the fields of bioremediation and bioprotection. Here we developed a new N fixation-release model by combining biochar with E. cloacae. The efficiency of the model was evaluated using a greenhouse pot experiment with maize (Zea mays L.) as the test crop. The results showed that biochar combined with E. cloacae significantly increased the N content. The application of biochar combined with E. cloacae increased total N in soil by 33% compared with that of N fertilizers application. The N-uptake and utilization efficiency (NUE) in plant was increased 17.03% and 14.18%, respectively. The activities of urease, dehydrogenase and fluorescein diacetate hydrolase (FDA) was improved, the catalase (CAT) activity decreased. Analysis of the microbial community diversity revealed the abundance of Proteobacteria, Actinobacteria, Firmicutes, and Gemmatimonadetes were significantly improved. The mechanism under the model is that E. cloacae acted as N-fixation by capturing N2 from air. Biochar served as carrier, supporting better living environment for E. cloacae, also as adsorbent adsorbing N from fertilizer and from fixed N by E. cloacae, the adsorption in turn slower the N release. Altogether, the model promotes N utilization by plants, improves the soil environment, and reduces N pollution.


Subject(s)
Fertilizers , Nitrogen , Agriculture/methods , Bacteria , Environmental Pollution , Fertilizers/analysis , Humans , Nitrogen/analysis , Soil , Zea mays
16.
Environ Pollut ; 310: 119726, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35810983

ABSTRACT

It is estimated that over 700,000 tons of synthetic dyes are produced annually, 15% of which are emitted as effluents. These highly stable dyes enter the world water ecosystems and stay in the environment, and eventually cause adverse impacts to the environment. Current wastewater treatment methods, such as filtration, coagulation, and chemical oxidation, have sideeffects, including toxic residue formation, membrane fouling, bioaccumulation, and secondary pollutant formation. Given the issues mentioned, it is necessary to study how to improve the degradation of synthetic dye with a cost-effective and ecofriendly approach. Natural oxidation provides a greener option. Recently, Deuteromycetes fungus Myrothecium verrucaria G-1 (M. verrucaria G-1) has shown great potential in producing high level of dye oxidase. This study aims to generate a dye oxidase hyperproducer, 3H6 from M. verrucaria G-1 by using atmospheric and room temperature plasma (ARTP) coupled with ultraviolet (UV) irradiation. This method increases oxidase production by nearly 106.15%. After a simple precipitation and dialysis, this mutant oxidase increases by 1.97-fold in a specific activity with dye degradation rates at 70% for Mmethylene blue (MB) and 85% for Congo red (CR). It is found that the genetic stability of 3H6 remains active for ten generations. The size of oxidase is 65 kDa, and optimum temperature for reaction is 30 °C with 4.5 pH. This study presents that the first combined mutagenesis approach by ARPT-UV on fungus species generates an impressive increment of acid dye oxidases production. As such, this method presents a cost-effective alternative to mitigate hazardous dye pollution.


Subject(s)
Hypocreales , Mitosporic Fungi , Water Pollutants, Chemical , Coloring Agents , Ecosystem , Mutagenesis , Oxidoreductases
17.
J Hazard Mater ; 436: 129304, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35739801

ABSTRACT

The wide use of hazardous formaldehyde (CH2O) in disinfections, adhesives and wood-based furniture leads to undesirable emissions to indoor environments. This is highly problematic as formaldehyde is a highly hazardous and toxic compound present in both liquid and gaseous form. The majority of gaseous and atmospheric formaldehyde derive from microbial and plant decomposition. However, plants also reversibly absorb formaldehyde released from for example indoor structural materials in such as furniture, thus offering beneficial phytoremediation properties. Here we provide the first comprehensive review of plant formaldehyde metabolism, physiology and remediation focusing on release and absorption including species-specific differences for maintaining indoor environmental air quality standards. Phytoremediation depends on rhizosphere, temperature, humidity and season and future indoor formaldehyde remediation therefore need to take these biological factors into account including the balance between emission and phytoremediation. This would pave the road for remediation of formaldehyde air pollution and improve planetary health through several of the UN Sustainable Development Goals.


Subject(s)
Air Pollution, Indoor , Air Pollution, Indoor/analysis , Biodegradation, Environmental , Formaldehyde/analysis , Humidity , Plants , Wood/chemistry
18.
Chemosphere ; 286(Pt 1): 131477, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34303046

ABSTRACT

Global solid waste is expected to increase by at least 70% annually until year 2050. The mixture of solid waste including food waste from food industry and domestic diaper waste in landfills is causing environmental and human health issues. Nevertheless, food and diaper waste containing high lignocellulose can easily degrade using lignocellulolytic enzymes thereby converted into energy for the development and growth of mushroom. Therefore, this study explores the potential of recycling biomass waste from coffee ground, banana, eggshell, tea waste, sugarcane bagasse and sawdust and diaper waste as raw material for Lingzhi mushroom (Ganoderma lucidum) cultivation. Using 2% of diaper core with sawdust biowaste leading to the fastest 100% mushroom mycelium spreading completed in one month. The highest production yield is 71.45 g mushroom; this represents about 36% production biological efficiency compared to only 21% as in commercial substrate. The high mushroom substrate reduction of 73% reflect the valorisation of landfill waste. The metabolomics profiling showed that the Lingzhi mushroom produced is of high quality with a high content of triterpene being the bioactive compounds that are medically important for treating assorted disease and used as health supplement. In conclusion, our study proposed a potential resource management towards zero-waste and circular bioeconomy for high profitable mushroom cultivation.


Subject(s)
Agaricales , Refuse Disposal , Reishi , Biomass , Food , Humans
19.
Chemosphere ; 291(Pt 1): 132679, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34718007

ABSTRACT

Poplar trees rapidly yield wood and are therefore suitable as a biofuel feedstock; however, the quality of poplar is modest, and the profitability of poplar cultivation depends on the efficiency of the harvesting process. This study offers a simple and sustainable technique to harvest lignocellulosic resources from poplar for bioethanol production. The proposed two-step pretreatment method increased the surface lignin content and decreased the surface polysaccharide content. The cellulose content increased to 54.9% and the xylan content decreased to 6.7% at 5% AC. The cellulose yield of poplar residues (Populus L.) reached 65.5% by this two-step acetic acid (AC) and sodium sulphite (SS) treatment method. Two-step pretreatment using 5% AC and 4% SS obtained a recovery of nearly 80% of the total available fermentable sugar. The surface characterization showed a higher porosity in treated samples, which improved their hydrolysability. This method decreased the amount of lignin in plant biomass, making it applicable for further wood resource recovery or waste recycling for biorefinery purposes at very low costs.


Subject(s)
Populus , Acetic Acid , Hydrolysis , Lignin , Sulfites
20.
Chemosphere ; 292: 133345, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34922964

ABSTRACT

Zero waste multistage utilization of biomass from Ginkgo biloba branches (GBBs) was achieved through extraction of bioactive components, analysis of antioxidant and antibacterial activities, preparation and composition of pyrolyzate, adsorption and reuse of modified biochar. The results showed that GBBs had abundant bioactive components for potential application in the industry of food, chemical raw materials and biomedicine. Especially, the bioactive compounds in acetone extract (10 mg/mL) of GBBs identified by DPPH and ABTS had free radical scavenging abilities of 92.28% and 98.18%, respectively, which are equivalent to Vitamin C used as an antioxidant in food additives. Fourier Transform Infrared and X-Ray Diffraction analysis showed that carboxymethyl cellulose (CMC) and magnetic Fe3O4 were successfully incorporated into raw biochar (RB) to form CMC-Fe3O4-RB nanomaterial. Scanning electron microscopy and X-Ray Diffraction spectroscopy displayed Fe, C, and O existed on the surface of CMC-Fe3O4-RB. Compared with RB, CMC-Fe3O4-RB had a larger specific surface area, pore volume and pore size. Meanwhile, nanomagnetic CMC-Fe3O4-RB solved the problem of agglomeration in traditional magnetized biochar production, and improved the adsorption capacity of Pb2+, which was 29.90% higher than that of RB by ICP-OES. Further, the Pb2+ (10 mg/L) adsorption capacity of CMC-Fe3O4-RB reached the highest level in 2 h at the dosage of 0.01 g/L, and remained stable at 52.987 mg/g after five cycles of adsorption and desorption. This research aided in the creation of a strategy for GBBs zero waste multistage usage and a circular economic model for GBBs industry development, which can be promoted and applied to the fields of food industry and environment improvement.


Subject(s)
Ginkgo biloba , Water Pollutants, Chemical , Adsorption , Carboxymethylcellulose Sodium , Charcoal , Plant Extracts , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...